受 験 地	受 験 番						号	氏	名	

平成 26 年度 舗装施工管理技術者資格試験

1 級 応 用 試 験

試 験 問 題 • 解 答 用 紙

試験開始前に次の注意をよく読んで下さい。

〔注 意〕

（1）合図があるまで，次ページ以降を開いてはいけません。
（2）この表紙の上の欄に受験地，受験番号，氏名を必ず記入して下さい。
（3）試験問題には必須問題と選択問題があります。
（4）問 1 は必須問題です。受験番号を記入のうえ，必ず解答して下さい。
（5）問 2 から問 5 までは選択問題です。このうち問題を 2 つ選択して，受験番号を記入のうえ，解答して下さい。問題を3つ以上解答した場合は減点となります。
（6）解答は，所定の解答欄に記入して下さい。
（7）答を訂正する場合は，消しゴムで丁寧に消して訂正して下さい。
（8）この試験問題•解答用紙の余白を計算などに使用しても，差支えありません。
（9）退席の際に，この試験問題•解答用紙は回収します。持ち帰りは厳禁です。
（10）試験問題では，「アスファルトコンクリート舗装」を「アスファルト舗装」「セメントコンクリート舗装」を「コンクリート舗装」などとしています。

問 1 は必須問題です。

問 1．あなたが経験した誧装工事のうちから1つを選び，その工事について下記の（1）～（4）の問に答えなさい。

略
（1）舗装工事名：工事名を明確に記述しなさい。（例：県道○○線○○舗装工事）
（工事名）
（2）工事内 容：工事の発注者，工期，主な工種，施工量を記述しなさい。
（発注者）
（工 期）
年 月～
年
月
（主な工種）
（施工量）
（3）工事現場における施工管理上のあなたの立場を明確に記述しなさい。
（立 場）
（4）その誧装工事の施工に当たって，（1）留意した施工管理項目の課題を工程，出来形•品質および安全のうちから選び（複数の選択可）ロにゝを記入し，その内容を 200 字以内，（2）課題に対して現場で実施した対策を 300 字以内，（3）得られた結果を 100 字以内で简潔に記述しなさい。

（2）前述の課題に対して現場で実施した対策

（3）得られた結果

問 2 から問 5 は選択問題です。これらのうち問題を 2 つ選択して解答しなさい。問題を3つ以上解答した場合は減点となります。

この問題を選んだ場合は記入

受験番号

問 2．舗装の設計に関する下記の $(1) ~(3)$ の問に答えなさい。
（1）路床の支持力評価として現状路床土を調査の結果，図－1に示す断面を得た。この地点のCBRm を求める解答欄の式の空欄（1）（2）（3）を埋めなさい。

厚さ 20 cm 未満の層はCBRの小さい方の

図－1 路床断面
（2）アスファルト舗装の信頼度 90% および 75% における設計式は式（1），式（2）に示す通りである。表－1 に示す設計条件における必要等値換算厚 T_{A} を解答弾の（4）（5）（6）に整数で求めなさい。なお， $2^{0.16}=1.12, ~ 4^{0.16}=1.25, ~ 8^{0.16}=1.39, ~ 365^{0.16}=2.57, ~ 35,000,000^{0.16}=16.1, ~ 70,000,000^{0.16}=18.0, ~$
$3,100^{0.16}=3.62, ~ 2^{0.3}=1.23, ~ 4^{0.3}=1.52, ~ 8^{0.3}=1.87$ とする。 \quad TA $=\frac{3.84 \times 35,000,000^{0.16}}{4^{0.3}}=\frac{3.84 \times 16.1}{1.52}$表－1 設偖条件 \uparrow 1.52
－信頼度 90% の場合

$$
\mathrm{T}_{\mathrm{A}}=\frac{3.84 \mathrm{~N}^{0.16}}{\mathrm{CBR}^{0.3}} \text { 式(1) }
$$

－信頼度 75% の場合
$\mathrm{T}_{\mathrm{A}}=\frac{3.43 \mathrm{~N}^{0.16}}{\mathrm{CBR}^{0.3}}$ 式（2）

（3）アスファルト舗装の構造設計を T_{A} 法により行う。交通量区分 N_{5} ，設計 $\mathrm{CBR}=4$ ，必要等値換算厚 $\mathrm{T}_{\mathrm{A}}=24 \mathrm{~cm}$ の条件において，図－ 2 に示す設計例 $1 \sim 3$ の舗装断面を設定した。等値換算係数 a を図－2 とした場合，必要等値換算厚を満足する層厚（7）8）（9）の最小値を整数で求め，解答欄に記入しなさい。

交通量区分N5 \rightarrow 表 • 基層最小厚さ $=10 \mathrm{~cm}$（設計例3の場合 5 cm ）
また，凍結深さが 55 cm の場合について設計照査し，凍上に対して効果的な設計例を選び，解答欄（10に○を記入しなさい。

注意点：路盤，表基層の最小厚さを確認する。

—表層•基層
上層路盤
下層路盤
路床

設計例1

加熱アスファルト $10 \times 1.0=10$ 混合物	0 cm
粒度調整砕石 $\mathrm{a}=0.35$	（7）
クラッシャラン $\mathrm{a}=0.25$ $35 \times 35 \mathrm{~cm}=8.8$	
現状土 $\mathrm{CBR}=4 \quad 100 \mathrm{~cm}$	

設計例 2

| 加熱アスファルト $10 \times 1.0=10$
 混合物 | 10 cm |
| :---: | :---: |$|$| セメント安定処理
 $\mathrm{a}=0.55$ |
| :---: |
| クラッシャラン
 $\mathrm{a}=0.2525 \times 0.25 \mathrm{~cm}=6.25$
 現状土 $\mathrm{CBR}=4$ 100 cm |

設計例 3

加熱アスファルト 混合物	（9）
涹青安定処理 （加熱混合） $\mathrm{a}=0.80$	15 cm $15 \times 0.8=12$ クラッシャラン $\mathrm{a}=0.25$ 現状土 $\mathrm{CBR}=40 \mathrm{~cm}$ $30 \times 0.25=7.5$

図－2 舗装設計断面
（7）$=(24-(10+8.8)) / 0.35=15 \quad 9)=(24-(12+7.5)) / 1.0=4.5 \rightarrow 5 \quad 55 \mathrm{~cm}$ 以上の舗装厚さ ＜解答欄＞

（8）$=(24-(10+6.25)) / 0.55=14.09 \rightarrow 15$

$\mathrm{T}<250$	5
$250 \leqq \mathrm{~T}<1,000 \mathrm{~N}_{5}$	$>\quad 10(5)$
$1,000 \leqq T<3,000$	15（10）
3，000§T	20（15）

問 2 から問 5 は選択問題です。これらのうち問題を 2 つ選択して解答しなさい。問題を 3 つ以上解答した場合は減点となります。

この問題を選んだ場合は記入
受験番号

問 3．アスファルト誧装の材料や試験に関する下記の（1）～（3）の問に答えなさい。
（1）加熱アスファルト混合物の配合設計上の耐摩耗対策を 2 つ簡潔に記述しなさい。また，酎摩耗性 を確認するための抃験方法なら選举げなさい。
＜解答欄〉 混合物の選定；F付混合物の選定

酎摩耗対策	歴青材料の選定；骨材把握力が強く，低温脆性抵抗のある改質アスコ骨材の選定；骨材はすり減り減量の小さい硬質骨材を選定する
	（2）配合設計；アスフアルト量は共通範囲で多めに設定する。
試験方法	ラベリング試験

（2）ポリマー改質アスファルトの使用目的を 2 つ挙げ，その目的に適したポリマー改質アスファルト の種類をそれぞれ 1 つ記述しなさい。
＜解答欄＞以下から2つ選択

| | 使用目的 | | ポリマー改質アスファルトの種類 |
| :--- | :---: | :--- | :--- | :--- | :--- |

（3）理論最大密度が $2.462\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ ，基準密度が $2.364\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ ，供試体の密度が $2.358\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ の供試体を使用してホィールトラッキング試験を実施し，下記の結果を得た。
（1）供試体の締固め度と単位を記述しなさい。
なお，値は小数点以下第二位を四捨五入して求めなさい。
（2）動的安定度と単位を記述しなさい。
なお，値は整数で求めなさい。
試験時の走行回数は 42 回／分とし，補正係数はすべて

【試験結果】

時間 $($ 分 $)$	変形量 (mm)
30	3.40
45	3.85
60	4.00

1.0 とする。
＜解答欄＞

	値	単位
（1）䋨固め度	$2.358 \div 2.364 \times 100=99.746$ 99.7	$\%$
（2）動的安定度	4,200	回 $/ \mathrm{mm}$

動的安定度は，1mm変形するのに要する車輪の走行回数であるので，42回／摂間（分）
に対して，試験時間45分から60分の15分間を掛けると，試験時間中の走行回数 がでる。したがって，その間の変形量で割ると動的安定度が求まる。

$$
\mathrm{DS}=42 \times \frac{60-45}{4.00-3.85} \times \text { 補正係数 }(1.0)=4,200
$$

問 2 から問 5 は選択問題です。これらのうち問題を 2 つ選択して解答しなさい。問題を 3 つ以上解答した場合は減点となります。

問 4．舗装の施工に関する下記の（1）～（4）の問に答えなさい。
（1）アスファルトフィニッシャに関する以下に示す装置の機能（役割）を簡潔に記述しなさい。 ＜解答相〉

装置	機能（役割）
（1）ホッパ	ダンプトラックなどからアスファルト等混合物を供給する受け皿装置
（2）バーフィータ	ホッパに供給された混合物を後方の敷き広げ装置に供給する装置
（3）スクリード	混合物をある程度締固めながら，平坦かつ一定の高さに仕上げる装置

（2）プライムコートの目的を 2 つ記述しなさい。
〈解答欄〉 下記から2つ選ぶ

	目的
（1）	路盤とアスファルト混合物とのなじみをよくする。 降策による路盤の洗掘または表面水に浸透などを防止する。
（2）	路盤表面に部に浸透しその部分を安定させる。 路盤からの水分の蒸発を遮断する。

（3）ポーラスアスファルト混合物の舗設において，タイヤローラによる仕上げ転圧を行う場合の施工上の留意点を 1 つ記述しなさい。また，交差点部に適用する場合の骨材飛散を抑制する対策手法を 2つ挙げなさい。
＜解答欄＞

タイヤローラ転圧の留意点	転圧は，表面温度が $70^{\circ} \mathrm{C}$ 程度になってから行うのが望ましい。	
骨材飛散の対策手法	（1）	空隙率を許容範囲内で小さくする。 表面に樹脂を散布•含浸し表面強化する。
	（2）	透水性レジンモルタルなどで透水機能を維持しながら路面を強化する。

（4）コンクリート舗装施工時の養生作業における留意点を 2 つ挙げなさい。
＜解答欄〉

留意点

（1）初期養生はコンクリート表面の急激な乾燥を防止するために行うので，コンクリート版の表面仕上げに引き続きできるだけ早く行う。

② 後期養生では養生マット等を用い，コンクリート版表面を隙間無く覆い，完全に湿潤状態 になるように散水する。

問 2 から問 5 は選択問題です。これらのうち問題を 2 つ選択して解答しなさい。問題を 3 つ以上解答した場合は減点となります。

この問題を選んだ場合は記入 \Rightarrow| 受験番号 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

問 5．アスファルト舗装の補修に関する下記の（1）～（3）の問に答えなさい。
（1）次に挙げる舗装の破損の原因と補修方法について，それぞれ 1 つ挙げ簡㵖に記述しなさい。 ＜解答闌〉

（1）	破損：龟甲状ひび割れ（走行軌跡部）	
	破損の原因	路床•路盤の支持力低下
	補修方法	打ち換え工法
（2）	破損：わだち掘れ（流動）	
	破損の原因	過大な大型車交通と混合物の品質バランスがとれていないこと
	補修方法	表層•基層打換え工法

（2）加熱アスファルト混合物を用いた切削オーバーレイエ法において，切削時の留意点を 2 つ挙げそ れぞれ简源に記述しなさい。また切削面にひび割れが発生している場合，リフレクションクラック の発生を䃮延させる対策を 2 つ挙げ，それぞれ简源に記述しなさい。
＜解答欄＞

切削オーバーレイエ法の切削時の留意点	
（1）	切削時の作業能率が気温等の影響を受ける場合には，路面ヒータ等を併用する。
（2）	切削㞕はきれいに除去し，特に切削溝の中に切削㞕などを残さないようにする。
リフレクションクラックの発生遅延対策	
（1）	リフレクションクラック抑制シートを切削面のひび割れ箇所を含め全面に使用する
（2）	応カ緩和層として開粒度タイプのアスファルトト混合物を旫削面に用いる。

（3）既設舖装の調査について，次の調査項目の具体的な調査方法をそれぞれ 1 つ挙げなさい。 ＜解答欄〉

調査項目	調査方法
（1）平たん性	3メータプロフィルメータによる測定
（2）ひび割れ率	スケッチ法による計測
（3）すべり測定値	振り子式スキッドレジスタンステスタ，回転式すべり抵抗測定器などによる

